64 research outputs found

    Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat

    Get PDF
    After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp. durum and spp. aestivum (durum wheat and common wheat) based on higher yields and technological characteristics. Nowadays, the use of whole ancient grains and pseudo cereals is considered nutritionally important. How ancient grains have positive effects is not entirely known, the fragmentation of the scientific knowledge being also related to the fact that ancient grains are not a homogeneous category. The KAMUT® trademark indicates a specific and ancient variety of grain (Triticum turgidum ssp. turanicum, commonly khorasan wheat), and guarantees certain attributes making studies sufficiently comparable. In this work, studies on KAMUT® khorasan wheat have been systematically reviewed, evidencing different aspects supporting its benefits. Although it is not possible to establish whether all ancient grains share these positive characteristics, in total or in part, this review provides further evidences supporting the consumption of ancient grains

    Antioxidative and anti-inflammatory effect of in vitro digested cookies baked using different types of flours and fermentation methods

    Get PDF
    There is an increased amount of evidence showing that consumption of whole grains and whole-grain-based products is associated with a reduction of the risk of developing many diseases, due mainly to the anti-inflammatory and antioxidative effects of their components.In this study, cookies, baked using different types of flours and fermentation methods, were digested in vitro and supplemented to cultured liver cells. Three different flours (ancient KAMUT® khorasan wheat grown in North America, ancient khorasan wheat grown in Italy, and modern durum wheat) and two different types of fermentation (standard and lactic fermentation) were used. This experimental design allowed us to supplement cells with a real food part of the human diet, and to consider possible differences related to the food matrix (types of flour) and processing (methods of fermentation). Cells were supplemented with the bioaccessible fractions derived from cookies in vitro digestion. Although results herein reported highlight the antioxidant and anti-inflammatory effect of all the supplementations, cookies made with khorasan flours appeared the most effective, particularly when the ancient grain was grown in North America under the KAMUT® brand. In light of the attempts to produce healthier food, this study underlines the importance of the type of grain to obtain baked products with an increased nutritional and functional value

    Olive oil industry by-products. Effects of a polyphenol-rich extract on the metabolome and response to inflammation in cultured intestinal cell

    Get PDF
    Over the past years, researchers and food manufacturers have become increasingly interested in olive polyphenols due to the recognition of their biological properties and probable role in the prevention of various diseases such as inflammatory bowel disease. Olive pomace, one of the main by-products of olive oil production, is a potential low-cost, phenol-rich ingredient for the formulation of functional food. In this study, the aqueous extract of olive pomace was characterized and used to supplement human intestinal cell in culture (Caco-2). The effect on the cell metabolome and the anti-inflammatory potential were then evaluated. Modification in the metabolome induced by supplementation clearly evidenced a metabolic shift toward a “glucose saving/accumulation” strategy that could have a role in maintaining anorexigenic hormone secretion and could explain the reported appetite-suppressing effect of the administration of polyphenol-rich food. In both basal and inflamed condition, supplementation significantly reduced the secretion of the main pro-inflammatory cytokine, IL-8. Thus, our data confirm the therapeutic potential of polyphenols, and specifically of olive pomace in intestinal bowel diseases. Although intervention studies are needed to confirm the clinical significance of our findings, the herein reported results pave the road for exploitation of olive pomace in the formulation of new, value-added foods. In addition, the application of a foodomics approach allowed observing a not hypothesized modulation of glucose metabolism

    Time course evaluation of collagen type IV in Pectoralis major muscles of broiler chickens selected for different growth-rates

    Get PDF
    Collagen type IV (COL4) is one of the major components of animals’ and humans’ basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers

    Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives?

    Get PDF
    Background: Foodstuffs of both plant and animal origin contain a wide range of bioactive compounds. Although human intervention studies are mandatory to assess the health effects of bioactives, the in vitro approach is often used to select the most promising molecules to be studied in vivo. To avoid misleading results, concentration and chemical form, exposure time, and potential cytotoxicity of the tested bioactives should be carefully set prior to any other experiments. Methods: In this study the possible cytotoxicity of different bioactives (docosahexaenoic acid, propionate, cyanidin-3-O-glucoside, protocatechuic acid), was investigated in HepG2 cells using different methods. Bioactives were supplemented to cells at different concentrations within the physiological range in human blood, alone or in combination, considering two different exposure times. Results: Reported data clearly evidence that in vitro cytotoxicity is tightly related to the exposure time, and it varies among bioactives, which could exert a cytotoxic effect even at a concentration within the in vivo physiological blood concentration range. Furthermore, co-supplementation of different bioactives can increase the cytotoxic effect. Conclusions: Our results underline the importance of in vitro cytotoxicity screening that should be considered mandatory before performing studies aimed to evaluate the effect of bioactives on other cellular parameters. Although this study is far from the demonstration of a toxic effect of the tested bioactives when administered to humans, it represents a starting point for future research aimed at verifying the existence of a potential hazard due to the wide use of high doses of multiple bioactives

    Impact of a Shorter Brine Soaking Time on Nutrient Bioaccessibility and Peptide Formation in 30-Months-Ripened Parmigiano Reggiano Cheese

    Get PDF
    Reducing the salt content in food is an important nutritional strategy for decreasing the risk of diet-related diseases. This strategy is particularly effective when applied to highly appreciated food having good nutritional characteristics, if it does not impact either upon sensory or nutritional properties of the final product. This work aimed at evaluating if the reduction of salt content by decreasing the brine soaking time modifies fatty acid and protein bioaccessibility and bioactive peptide formation in a 30-month-ripened Parmigiano Reggiano cheese (PRC). Hence, conventional and hyposodic PRC underwent in vitro static gastrointestinal digestion, and fatty acid and protein bioaccessibility were assessed. The release of peptide sequences during digestion was followed by LC–HRMS, and bioactive peptides were identified using a bioinformatic approach. At the end of digestion, fatty acid and protein bioaccessibility were similar in conventional and hyposodic PRC, but most of the bioactive peptides, mainly the ACE-inhibitors, were present in higher concentrations in the low-salt cheese. Considering that the sensory profiles were already evaluated as remarkably similar in conventional and hyposodic PRC, our results confirmed that shortening brine soaking time represents a promising strategy to reduce salt content in PRC

    The evolution of vimentin and desmin in Pectoralis major muscles of broiler chickens supports their essential role in muscle regeneration

    Get PDF
    Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils’ regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to coexpressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers’ regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes

    Effect of Sprouting on Biomolecular and Antioxidant Features of Common Buckwheat (Fagopyrum esculentum)

    Get PDF
    Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest

    Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami

    Get PDF
    Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value
    • …
    corecore